
 
 
IGCC Working Paper | December 2024  

 
1 

   

 

Timing is Everything: A 
New Way to Estimate 
Strategic Behavior 
Danny Klinenberg, Eli Berman, and Esteban Klor 
 
 
 

Abstract 
Many applied economic studies aim to estimate strategic behavior through reaction curves. Examples 
include two-sided conflicts, or economic trade wars, and algorithmic pricing between firms. Analysis is 
usually performed at a prespecified time interval, such as days, weeks, months, or years, using a vector 
autoregression (VAR). Yet sides may respond within a day to one action, but wait a month after 
another. If data is recorded in arbitrary time intervals, then the researcher may mistake waiting to act 
for inaction. We analytically show that VAR analyses do not recover true reaction curves if the timing 
of reaction is not accurately recorded. This misspecification can cause the sign of the VAR coefficient to 
reverse and misspecified standard errors leading to erroneous inference. We discuss an alternative 
structural approach rooted in game theory to estimate reaction curves and investigate its usefulness in 
a Monte Carlo simulation. 
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“And have no doubt—we will hold all those 
responsible to account at a time and in a  
manner [of] our choosing.” 
—President Joe Biden discussing the United States’ response to missile and drone 
attacks targeting United States military installations resulting in three casualties.1  
 

 

1. Introduction 

A common inquiry in economics is quantitatively measuring how sides react to one 
another. For example, Jaeger and Paserman (2008) first document the dynamics of 
violence as cyclical in the Palestinian-Israeli conflict during the Second Intifada. Applying 
a standard vector autoregression (VAR) using daily deaths, it fails to find evidence that 
the Palestinians and Israelis engage in a predictable “tit for tat” cycle of violence. We 
highlight an unexplored challenge in this type of analysis: data being recorded at 
arbitrary time intervals. 
 
Conflicts can be thought of as a sequential game, where each player performs actions 
(e.g., airstrikes, mortar fire).2 We show that if players are reacting to each other’s 
actions but wait a varying amount of time before doing so, then analyzing a conflict 
using a VAR with data recorded at some time unit, such as the daily level, can result in 
misspecified lag length, biased point estimates, and biased empirical responses. Put 
simply, ignoring the waiting dimension of a best response function creates severe 
misspecification in a VAR analysis. Moreso, we show analytically that this 
misspecification bias can lead to the VAR coefficient sign reversal. 
 
We provide an approach to address this, stemming from the underlying microstructure 
of the problem. Our recommendation is to organize the data at the action level rather 
than a time unit like days or weeks whenever possible. This approach is inherently 
structural and requires the researcher to identify inaction from waiting to act. We 
analytically derive what happens when the researcher’s probability of success departs 
from an oracle. 
 
  

 
1  The White House (2024). “Statement from President Joe Biden on Attack on U.S. Service Members in Northeastern 

Jordan Near the Syria Border.” January 28, 2024.  https://jo.usembassy.gov/statement-from-president-joe-biden-on-
attack-on-u-s-service-members-in-northeastern-jordan-near-the-syria-border/.  

2  Maskin and Tirole (1988) make a similar argument when modeling pricing strategies. 

https://jo.usembassy.gov/statement-from-president-joe-biden-on-attack-on-u-s-service-members-in-northeastern-jordan-near-the-syria-border/
https://jo.usembassy.gov/statement-from-president-joe-biden-on-attack-on-u-s-service-members-in-northeastern-jordan-near-the-syria-border/
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We compare the effectiveness and pitfalls of VAR and our structural approach through 
an empirical Monte Carlo exercise. As our theory predicts, VAR fails to estimate the 
parameters of the reaction curves. The optimal lag length is longer and closely related to 
the maximum number of waiting periods between actions. The estimated impulse  
response functions also produce statistically significant effects for too many periods into 
the future. Finally, the point estimates are severely biased compared to the reaction 
function in magnitude and statistical significance. 
 
Our structural solution performs somewhat better. If the researcher had perfect 
foresight to remove waiting periods, then the rule-based approach captures the 
reaction curve. However, removing inaction or failing to remove a waiting period can 
lead to misleading estimates. We investigate the approach’s sensitivity to being overly 
cautious—leaving waiting periods in—and overly aggressive, removing periods of 
inaction. A small literature has developed from Jaeger and Paserman (2008) studying 
the Israel-Gaza conflict with VARs. Haushofer, Biletzki, and Kanwisher (2010) extend the 
analysis to include nonlethal acts of retaliation (e.g., Qassam rocket fire) and conclude 
that Israeli military actions against Palestinians lead to escalation rather than 
incapacitation and that the Palestinians are in fact reacting to Israeli behavior.3 Finally, 
Asali, Abu-Qarn, and Beenstock (2017) revisit Jaeger and Paserman (2008) focusing on 
modeling the problem nonlinearly. However, none view the conflict as a sequential 
game and investigated the implications of strategic behavior in the econometric 
estimation. 
 
Our findings more generally apply to any strategic interaction where the unit of 
observation differs from the unit of action. This phenomenon has been noted in 
previous literature. Noel (2007) writes that “the ‘true’ length of a period 𝑡𝑡 [time to 
respond] as determined by gasoline stations is unlikely to be identical to the length of a 
period chosen by the econometrician when collecting data.” A large econometric 
literature has developed around time series analysis’ sensitivity to aggregation (e.g., 
Working 1960; Zellner and Montmarquette 1971). Additional work shows that when 
data is analyzed at a coarser time interval than the data generating process, there may 
be biases in the impulse response functions, trend-cycle decomposition, and forecasting 
(e.g., Brewer 1973; Tiao and Wei 1976; Geweke 1978; Wei 1978; Freeman 1989; 
Marcellino 1999). These works do not address the issue of sampling at a finer time 
interval than the data generating process because this was not a common data issue for 
the time. Given the increasing access researchers have to high frequency data, we 
expect our findings to solve an ever-growing issue in estimating reaction curves. 
 

 
3  See Golan and Rosenblatt (2011) for a comment on this work. 
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Our explanation for why VAR fails in this setting is inspired by the decomposition of 
ordinary least squares (OLS) coefficients in the presence of heterogeneity common in 
the causal inference literature. Angrist (1998) decomposes the pooled OLS estimate into 
a weighted average of subgroups. We extend this train of thought to VAR estimates 
where the heterogeneity is unknown to the econometrician. In doing so, we take the 
intuition from the causal inference literature and apply it to time series methods used to 
study strategic behaviors. 
 
We focus on developing a solution closely tied to the game-theoretic underpinnings of 
our setting. An alternative approach would be to develop VAR-like estimators that take 
into account irregularly spaced data. A subfield has developed from Engle and Russell 
(1998) on such problems in financial econometrics. Estimation is done at the transaction 
level jointly estimating the time between transactions and characteristics (e.g., Engle 
2000). Ait-Sahalia and Mykland (2003) also show that ignoring the randomness in event 
arrivals leads to a substantial “cost of discreteness.” While potentially relevant to our 
setting, this is a purely reduced-form estimation strategy that does not take into 
account the strategic behavior of either. 
 
The remainder of the paper is organized as follows: Section 2 provides the setting and 
analytically derives the potential bias from analyzing actions in time intervals. Section 3 
proposes the theoretical method used to recover the reaction curves: reformatting the 
data to the action level. Section 4 presents a Monte Carlo simulation investigating each 
approach, and Section 5 concludes.  
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2. Econometric Theory 

We first assume two players are competing in a sequential game, similar to Berman et 
al. (2023). For simplicity, we assume each side reacts to the last side’s action following a 
Markov one process. Intuitively, this means that the last action is a sufficient statistic for 
the state of the game. 
 
Suppose the two sides are labeled Y and X. Without loss of generality, Y is the 
first mover. Assuming a sequential game, player Y will not make a move on even turns 
and player X will not make a move on odd turns. The action data is indexed as 

{𝑌𝑌1, 𝑋𝑋2, 𝑌𝑌3, 𝑋𝑋4, … } to emphasize the nature of the game, where 𝑌𝑌𝑎𝑎, 𝑋𝑋𝑎𝑎 ∈ ℝ.  

 
We set the data generating process to be 
 

𝑌𝑌𝑎𝑎 = 𝑔𝑔(𝑋𝑋𝑎𝑎−1) + 𝜖𝜖𝑎𝑎 (1) 
 
where 𝜖𝜖𝑎𝑎 are independent idiosyncratic shocks, 𝔼𝔼[𝜖𝜖𝑎𝑎|𝑋𝑋𝑎𝑎−1] = 0 and 𝔼𝔼[𝜖𝜖2

𝑎𝑎|𝑋𝑋𝑎𝑎−1 ] = 𝜎𝜎𝑎𝑎2 .  
The randomness translates to a Markov one process mixed strategy employed in  
many sequential games, and a common modeling choice in industrial organizations 
(Noel 2007). Notice that the index 𝑎𝑎 says nothing about the time interval that occurs 
between actions. There could be a millisecond between 𝑌𝑌𝑎𝑎 and 𝑋𝑋𝑎𝑎−1 and a year 
between 𝑋𝑋𝑎𝑎−1 and 𝑌𝑌𝑎𝑎−2. Finally, we assume 𝑃𝑃 𝑟𝑟(𝑌𝑌𝑎𝑎 = 0|𝑋𝑋𝑎𝑎−1), 𝑃𝑃 𝑟𝑟(𝑋𝑋𝑎𝑎 = 0|𝑌𝑌𝑎𝑎−1) > 0. 
This equates to both sides playing a mixed strategy where they choose to not respond 
some of the time. This is common in conflict, as motivated in Section 1. Similar behavior 
may be observed in price wars due to menu costs and customers anchoring their 
expectations on price. Without this assumption on strategic behavior, the main point of 
our paper would simplify to the trivial advice of “remove the zeros before performing 
econometric analysis.” 
 
2.2 Actions Recorded in Time 

Assume the researcher observes the data at a specified time interval, such as days. 
Furthermore, assume that at most one action occurs per time interval and actions do 
not span multiple time intervals. Unbeknownst to the researcher, let 𝑙𝑙 be the time 
interval between actions with 𝑙𝑙 = {0, 1, … , 𝐿𝐿}. Notice 𝑙𝑙 is allowed to differ between 
actions. Because no actions occur between 𝑡𝑡 − 1 and 𝑡𝑡 − 𝑙𝑙, the researcher observes these 
“waiting” periods where {𝑌𝑌𝑘𝑘, 𝑋𝑋𝑘𝑘 } 𝑡𝑡𝑘𝑘

−
=
𝑙𝑙
𝑡𝑡− 1  = {(0, 0 ) } 𝑡𝑡𝑘𝑘

−
=
𝑙𝑙
𝑡𝑡− 1 .  This captures the dual decision 

the players make: whether to react and, if so, how long to wait before reacting. The 
econometrician is unable to discern whether the observation (𝑌𝑌𝑘𝑘, 𝑋𝑋𝑘𝑘) = (0, 0) generated 
from waiting or nonaction. 
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Figure 1. Graphical example of actions recorded at prespecified time intervals. Black 
points represent time intervals in which a side attacked causing nonzero damage. Open 
points represent time intervals in which a side caused zero damage (performed a 
nonaction). Time intervals with no markers represent waiting, which are also recorded 
as zeros. 
 

 

 

Figure 1 provides a graphical illustration.4 Suppose Player A and Player B are observed 
over 10 time intervals (e.g., days). Within each day, a player may perform an action 
causing positive damage, perform an action causing no damage (inaction), or wait to 
perform an action. The black circle represents an action that causes positive damage, 
the open circle represents nonactions (no damage), and empty slots represent waiting. 
In this example, Player A first inflicts positive damage on Player B (𝑡𝑡 = 1). Player B then 
waits three time periods and decides not to respond to Player A (𝑡𝑡 = 4). Player A then 
attacks inflicting positive damage at 𝑡𝑡 = 6, leading to a retaliation from Player B, 
followed by further attacks from Player A that ends with both sides performing 
nonactions (𝑡𝑡 = 9 and 𝑡𝑡 = 10). 
 
  

 
4  We take heavy inspiration in this graphic from Brown and MacKay (2023) explaining the reaction  

of algorithmic pricing. 
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Studying the sequential game in arbitrary time intervals causes the lag structure to differ 
across actions. Even though Player B’s first and second actions (e.g., 𝑡𝑡 = 4 and 𝑡𝑡 = 7) are 
reacting to Player A’s previous action, Player B is reacting to the third lagged time period 
in their first action (𝑡𝑡 = 1) and first lagged time period in the second action (𝑡𝑡 = 6). We 
refer to the mapping between recording actions at the action level and time-interval 
level as the data aggregation process. 
 
Formally, let 𝑆𝑆𝑆𝑆 be a variable unobserved by the econometrician equal to the number of 
lags caused by the data aggregation process. This equates to the number of recorded 
time periods a side waits before responding to an action. Let 𝑆𝑆𝑡𝑡 = 𝐿𝐿 + 1 if an actor is 
“waiting” in period 𝑡𝑡. Then the observed data can be partitioned by the lag length such 
that: 

 

At the action level, Equation (1) is a continuous data generating process (e.g.,  𝔼𝔼[𝑌𝑌𝑎𝑎|𝑋𝑋𝑎𝑎] 
= 𝑔𝑔(𝑋𝑋𝑎𝑎) ∀𝑎𝑎). Although the data generating process is continuous, Equation 2 shows 
that the data aggregation process is piecewise based on the length of response time. 
 
2.3 Pitfalls of VAR 

Given time-level data, a common estimation strategy is a reduced-form vector 
autoregression with order 𝑝𝑝 ≥ 𝑙𝑙 + 1: 

 
 
How does 𝛽𝛽 relate to the action-level reaction function given the difference in response 
times and waiting observations? 
 
Theorem 1. Suppose 𝑌𝑌𝑌𝑌 comes from the data aggregation process defined in Equation 
(2). 𝛽𝛽𝑥𝑥,𝑙𝑙 from Equation (3) can be decomposed as 
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Where  
 
i) 𝛽𝛽𝑥𝑥,𝑙𝑙

𝑘𝑘  is the least squares parameter using observations when 𝑆𝑆𝑡𝑡 = 𝑘𝑘,  
ii) 
 

 
 

where X� 𝑡𝑡−𝑙𝑙 is the residual of 𝑋𝑋𝑡𝑡−𝑙𝑙 on all other explanatory variables, 
 

 
 
The proof follows from standard linear projection properties:  
 
Proof. Let 𝑙𝑙 ∈ [0, 𝑝𝑝]. Let X� 𝑡𝑡−𝑙𝑙 be the of 𝑋𝑋𝑡𝑡−𝑙𝑙 regressed on all other regressors in Equation 
(3). Then 𝛽𝛽𝑥𝑥,𝑙𝑙 can be decomposed as: 
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The second line applies the law of total covariance. Notice that X� 𝑡𝑡−𝑙𝑙 must now be 
calculated separately for each subset of 𝑆𝑆𝑆𝑆, or else the residuals will also be biased. The 
third line multiplies by 1 to each term in the numerator. The fourth line rearranges while 
the fifth line expands the first term in the numerator. The final line rewrites the terms as 
weights. It can be shown  
 
 
 
meaning that the weights are nonnegative and sum to 1. 
 
Equation (4) showcases two potential issues with estimating reaction functions  
with a VAR analysis. The first is model specification. If the reaction function includes 
terms or higher orders not included in the VAR, then the model will suffer from 
misspecification bias. 
 
Assuming the VAR includes at least all terms in the reaction function, the analysis still 
may not recover the reaction parameters because of the aggregation across response 
times and the pooled estimate. Furthermore, the bias cannot be signed. By definition,  
𝛽𝛽𝑥𝑥,𝑙𝑙
𝑘𝑘 = 0 when 𝑘𝑘 ≠ 𝑙𝑙, meaning that the first term is attenuated toward 0 whenever 

𝑤𝑤𝑘𝑘𝑙𝑙 ≠ 1. The second term captures the variation between means of reaction time. As 
Simpson (1951) showed in a cross-sectional setting, this term can cause sign reversals 
and erroneous inference. 
 
Intuitively, analyzing action-level data at an arbitrary time-interval level creates a 
piecewise data aggregation process based on the response time. Estimating coefficients 
at the time-interval level leads to averaging over the different data aggregation 
processes, creating the illusion of long response times. Our results can be concisely 
summarized in terms of regimes (Hamilton 1989): a coefficient estimated over multiple 
regimes averages i) the relationship between the outcome and explanatory variable for 
each regime and ii) the relationship across regimes. 
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2.3.1 Illustration and Intuition 

Imagine that there are two gas stations, X and Y, participating in a Bertrand competition. 
For simplicity, assume the fundamentals of the profit function remain constant. The 
objective is to study how the stations change their prices in response to the other 
price.5 Let 𝑌𝑌𝑎𝑎 (𝑋𝑋𝑎𝑎) be the change in price station Y (X) implements during action 𝑎𝑎. 
Also assume that 𝑌𝑌𝑎𝑎 = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋𝑎𝑎−1 + 𝜖𝜖𝑎𝑎, where 𝑌𝑌𝑎𝑎 is the price at action 𝑎𝑎 for gas 
station Y. 
 
The econometrician records the price of both gas stations four times a day. 
Unbeknownst to them, the gas station managers who set the price are sometimes 
distracted with other tasks and don’t always notice exactly when prices change. For 
simplicity, assume that the managers always check at the end of the day, meaning that 
at most it takes them three quarters of a day to respond to a price change, and the 
amount of time it takes them to respond is idiosyncratic. 
 
Relating back to the econometric setting, actors X and Y respond after no lull periods, 
or after one, two, or three lull periods. The number of lull periods after which each side 
responds is randomly assigned with equal probability. Then for some t such that 𝑆𝑆𝑡𝑡 = 𝑙𝑙, 
𝑌𝑌𝑡𝑡 = 𝛼𝛼0+𝛼𝛼1𝑋𝑋𝑡𝑡−𝑙𝑙+𝜖𝜖𝑡𝑡 is the data generating process for 𝑙𝑙 ∈ {0, 1, 2, 3, 4}. The data 
aggregation process partitions the observations into five groups: the first four refer to 
which lagged time-interval Y responds. The final group captures the time-interval 
observations in which Y does not move because they are busy with other tasks (e.g., 𝑌𝑌𝑎𝑎 
= 0) or it is X’s turn to perform an action. 
 
Suppose the econometrician estimates the reaction function in quarter days (i.e., {𝑌𝑌𝑡𝑡, 
𝑋𝑋𝑡𝑡}) following Equation (3) with 𝑝𝑝 = 4. By definition, 𝛽𝛽𝑥𝑥,𝑙𝑙

𝑘𝑘 = 𝛼𝛼1 for 𝑘𝑘 = 𝑙𝑙 and 0 (including 
the coefficients on the Y lags). Because every regressor in the action-level data is included 
in the time-interval level data, the VAR coefficient simplifies to 
 

 
Similarly, 𝛽𝛽𝑦𝑦,𝑙𝑙  may not equal zero because of the additional cross-response time term, 
𝛽̈𝛽𝑦𝑦,𝑙𝑙. 
 
Figure 2 plots the true reaction function from the action-level data, with slope 𝛽𝛽𝑥𝑥,𝑙𝑙

𝑘𝑘 ,  
versus the VAR estimates using the time-interval level data, 𝛽𝛽𝑦𝑦,𝑙𝑙  The X axis shows 

 
5  Maskin and Tirole (1988) model and Noel (2007) estimates such a phenomena in the context of Edgeworth cycles. 
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𝑋𝑋𝑡𝑡−𝑙𝑙 residualized on all other regressors while the y axis is 𝑌𝑌𝑡𝑡. The blue dashed line  
is the true reaction function while the black is the estimate from the VAR. The pluses  
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are time periods in which Y reacted to an X action 𝑡𝑡 − 𝑙𝑙 periods back, the squares when  
Y reacts to other lag lengths, and the large triangle is when X reacts to Y and the circles  
are the lull periods. 
 
Figure 2. Comparison of action-level response and VAR coefficient. The blue dashed line  
is the true action-level response while the black line is the estimate from the time-level 
VAR estimates. 

 
 
There are three main takeaways from this example. First, 𝛽𝛽𝑦𝑦,𝑙𝑙  will be an attenuated 
estimate of the true reaction curve if 𝛽𝛽𝑥𝑥,𝑙𝑙

𝑘𝑘 = 𝛼𝛼1. If 𝛽𝛽𝑥𝑥,𝑙𝑙
𝑘𝑘 ≠ 𝛼𝛼1., the bias of the estimate will 

depend on the cross-reaction covariances, which may be positive or negative. Second, 

side X and Y’s varying response times create a facade of many previous prices affecting 

current prices. Regressing over all the data shows on average each side responds to 
multiple lags of price levels, when the data generating process shows only the 
previous price. Even lags in which the actor never responds to (e.g., a lagged Y action 
for side Y) may be biased because of the cross-group coefficient, 𝛽̈𝛽.Third, the difference 

in response times means that 𝛽𝛽𝑖𝑖,𝑙𝑙 ≠ 0 or 𝑖𝑖 ∈ {𝑥𝑥, 𝑦𝑦} and all values of 𝑙𝑙. This biproduct of 

the regression estimates aggregating the data to a time-interval can create the illusion 
of a cyclical behavior. 
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In conclusion, a VAR analysis may suggest drawn-out long cycles, even when both sides 
are following a Markov one sequential strategy, if the data is analyzed at a time-interval 
level rather than at the action level. 

3. An Alternative Structural Approach 

We instead propose a structural approach to estimating responses. This structural 
approach requires establishing a rule to determine which periods demonstrate waiting 
to act and which involve inaction. We discuss considerations in choosing the rule and 
potential biases introduced when the rule diverges from the oracle rule. 
 
3.1 The Approach 

This approach involves removing the waiting periods and estimating the reaction curve 
from Equation (1). This requires assuming a rule to identify the state of the form 
𝑃𝑃 𝑟𝑟(rule identifies waiting period|previous actions) = 1 and 0 otherwise. The waiting 
time intervals are then removed from the dataset. The remaining data follows Equation 
(1) and estimation of the reaction curve is performed on it. 
 
A VAR specification assumes that the rule is 𝑃𝑃 𝑟𝑟(𝑆𝑆𝑡𝑡 = 1) = 0, meaning that every 
observation is considered an action. There is no strategic waiting between actions, 
implying the constant lag structure is a reasonable approximation to the data generating 
process. Alternatively, assuming that 𝑃𝑃 𝑟𝑟(𝑆𝑆𝑡𝑡 = 1|𝑥𝑥𝑡𝑡 = 𝑦𝑦𝑡𝑡 = 0) = 1 assumes that every time 
interval with null actions are assumed to be inactions and can be removed. In this case, 
both sides are assumed to not be mixing between action and inaction. 
 
There are two considerations when crafting a rule: reaction time constraints and players 
signaling a response. First, a side may not have the necessary resources for an 
immediate action. This was the case with the United States reallocating resources to the 
Middle East after Iranian proxies killed three service members. Conversely, in prolonged 
conflicts like Israel-Gaza, both sides have all resources necessary to retaliate at the 
ready—Gazans have quickly deployable mortars while Israelis have drones continuously 
overhead (Haushofer, Biletzki, and Kanwisher 2010). The second constraint is signaling a 
response. If the action takes too long, the other side may interpret this as independent 
of their previous actions. This would suggest a reaction curve independent of the other 
player, defeating the intended purpose. 
 
In Section 4.3, we investigate how off a rule can be and still produce reasonable point 
estimates and inference. Below, we provide an analytic illustration of the pitfalls of 
imperfect rules. 
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3.2 Illustration and Intuition of Misspecification 

A misspecified rule can lead to removing inactions or keeping in waiting periods. Section 
2.3 showcased the problems associated with keeping all the waiting periods. The other 
extreme case is removing all potential waiting periods (i.e., 𝑃𝑃 𝑟𝑟(𝑆𝑆𝑡𝑡 = 1|𝑥𝑥𝑡𝑡 = 𝑦𝑦𝑡𝑡 = 0) = 1). 
The bias in the slope from this rule will be attenuated if the coefficient is less than 1 in 
absolute value. 
 
Suppose 𝑌𝑌𝑎𝑎 = 𝛼𝛼0 +𝛼𝛼1𝑋𝑋𝑎𝑎−1 +𝜖𝜖𝑎𝑎 and 𝑋𝑋𝑎𝑎 = 𝛼𝛼0 +𝛼𝛼1𝑌𝑌𝑎𝑎−1 +𝜖𝜖𝑎𝑎. The researcher observes two 
series {𝑦𝑦𝑡𝑡, 𝑥𝑥𝑡𝑡}. Following 𝑃𝑃 𝑟𝑟(𝑆𝑆𝑡𝑡 = 1|𝑥𝑥𝑡𝑡 = 𝑦𝑦𝑡𝑡 = 0) = 1, they remove all time intervals in 
which 𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡 = 0 creating {𝑦́𝑦𝑡𝑡|𝑥́𝑥𝑡𝑡} and then estimate 𝔼𝔼[𝑦́𝑦𝑡𝑡|𝑥́𝑥𝑡𝑡] = 𝛾𝛾0 + 𝛾𝛾1𝑥́𝑥𝑡𝑡. 
 
Removing all of the actions such that 𝑦𝑦𝑎𝑎 = 0 biases 𝛾𝛾0 term upward, while removing all 
the actions in which 𝑥𝑥𝑎𝑎 = 0 may bias 𝛾𝛾1 up or down depending on the magnitude of 𝛼𝛼1. 
Following the same steps as in Section 2.3, 𝛾𝛾1 can be decomposed into states 𝒮𝒮𝑡𝑡 such 
that 

 
 
where 𝑘𝑘 denotes the number of 𝑥𝑥 actions removed due to the rule. If 𝑘𝑘 = 1, then one 

𝑥𝑥 action was removed in the rule so 𝛾𝛾1
1 =  𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑎𝑎,𝑥𝑥𝑎𝑎−3|𝒮𝒮𝑡𝑡=1)

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑎𝑎−3|𝒮𝒮𝑡𝑡=1)
=  𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑎𝑎,𝑥𝑥𝑎𝑎−3)

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑎𝑎−3)
 . Notice that 

𝛾𝛾1 = 0 because 𝔼𝔼[𝑥́𝑥𝑡𝑡|𝒮𝒮𝑡𝑡] =  𝔼𝔼[𝑥́𝑥𝑡𝑡] in this case.6 
 
Finally, the sequential nature of the analysis at the action level implies that γ1𝑘𝑘 = 𝛼𝛼13𝑘𝑘. 
Together, 𝛾𝛾1 can be written as: 

 
Where ∑ 𝑤𝑤𝑘𝑘 = 1𝑘𝑘 . Following the same logic from earlier, 𝑤𝑤𝑘𝑘 = Pr(𝒮𝒮𝑡𝑡 =

𝑘𝑘) 𝑣𝑣𝑣𝑣𝑣𝑣 �𝑥𝑥𝑎𝑎−𝑘𝑘�𝒮𝒮𝑡𝑡 = 𝑘𝑘�
𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑎𝑎−𝑘𝑘) = Pr (𝑆𝑆𝑡𝑡 = 𝑘𝑘). In other words, 𝛾𝛾1 is weighted based on the 

probability of each state. If 𝑤𝑤0 = 1, the rule perfectly removed the waiting periods 
without removing any of the inactions. 
 
If |𝛼𝛼1| < 1, then 𝛾𝛾1 will be attenuated following this rule. Conversely, if |𝛼𝛼1| > 1, then 𝛾𝛾1 
will be biased upward. The findings from this rule are informative if |𝛾𝛾1| < 1 and 
statistically significant or |𝛾𝛾1| > 1 and is a precisely estimated null effect. 
  

 
6  𝔼𝔼[𝑥́𝑥𝑡𝑡|𝒮𝒮𝑡𝑡 = 𝑘𝑘] = 𝔼𝔼[𝛼𝛼0 + 𝛼𝛼1𝑦𝑦𝑎𝑎−𝑘𝑘|𝒮𝒮𝑡𝑡] by definition. However, 𝔼𝔼[𝑦𝑦𝑎𝑎−𝑘𝑘|𝒮𝒮𝑡𝑡] = 𝔼𝔼[𝑦𝑦𝑎𝑎−𝑘𝑘] because 𝒮𝒮𝑡𝑡 only affects the 

indexing in time. 
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4. Simulations 

We develop a simulation study to compare the VAR estimation to the structural 
approach. Section 4.1 introduces the simulation setup, Section 4.2 showcases how a 
VAR analysis may lead to erroneous conclusions in a strategic framework with waiting, 
and Section 4.3 discusses the pros and cons of our structural approach. 
 
4.1 Simulation Setup 

We first generate the data at the action level, then insert waiting periods. We define 𝑌𝑌𝑎𝑎 
= 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝛼𝛼0 +𝛼𝛼1𝑋𝑋𝑎𝑎−1 +𝜖𝜖𝑎𝑎) and 𝑋𝑋𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝛼𝛼0 +𝛼𝛼1𝑌𝑌𝑎𝑎−1 +𝜖𝜖𝑎𝑎), where 𝜖𝜖 ∼ 𝒩𝒩(0, 1). 
Player 𝑌𝑌 makes a move on odd actions while player 𝑋𝑋 makes a move on even 
actions. Turns in which a player is not moving is recorded as 0. We set (𝛼𝛼0, 𝛼𝛼1) = (1, 
.5) during the simulations. 
 
After generating 500 actions for each side, we add zero, one, or two waiting periods 
between actions. The wait time is drawn from a uniform distribution. Section A.1 
provides example data. We perform this Monte Carlo analysis 1000 times. 
 
For the VAR, we first use the Bayesian Information Criterion (BIC) to determine optimal 
lags, then calculate the significance of each lag term. We present the point estimates 
from one side as well as the orthogonal impulse responses. 
 
For the structural approach, we start with the oracle rule (i.e., 𝑃𝑃 𝑟𝑟(𝑆𝑆𝑡𝑡 = 𝐿𝐿 + 1) = 1) and 
then decrease the probability by 0.1 until we have a rule that keeps all the waiting 
periods and removes all the inactions (i.e., 𝑃𝑃 𝑟𝑟(𝑆𝑆𝑡𝑡 = 𝐿𝐿 + 1) = 0). In practice, we assign an 
inclusion probability based on whether the side is performing an inaction or waiting. In 
all iterations, we assume the reaction curve specification is known. Specifically, we 
estimate 𝔼𝔼[𝑦́𝑦𝑡𝑡|𝑥́𝑥𝑡𝑡] = 𝛼𝛼0 + 𝛼𝛼1𝑥́𝑥𝑡𝑡 as the reaction curve. 
 
Our ultimate goal is to understand if these methods properly recover the parameters 
of the reaction curve. For the VAR analysis, we focus on the i) optimal lag length, ii) 
coefficient point estimates and statistical significance, and iii) impulse response 
functions. For the structural approach, we report the point estimate for the intercept 
and slope and whether the estimates are statistically different from the true reaction 
curves parameters. 
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4.2 VAR Findings 

We first investigate how a VAR performs in this setting using Equation 3 by estimating 
the optimal lag length based on the BIC, the coefficient estimates, and orthogonal 
impulse responses. 
 
Figure 3 plots the histogram of optimal lag lengths over all the simulations. The median 
optimal lag length is four. This aligns with the maximum number of waiting periods 
being three in the simulation. 
 
Figure 3. Optimal VAR lag length 

 
 
Taken at face value, this exercise suggests that an action is dependent on the past four 
actions. This is somewhat true—actions followed by three waiting periods are 
dependent on the fourth lag. However, some actions depend on only one lag while 
others depend on two or three. The BIC approach to optimal lag length is correctly 
identifying the largest number of periods one side waits to respond to another. 
 
Figure 4 plots the average point estimate and 95 percent of the Monte Carlo distribution 
for each lagged coefficient. The coefficients are statistically significant and large across 
the simulations. While Y’s actions are defined to depend only on X’s previous action,  
the VAR analysis suggests that the five previous actions of X and Y are associated with 
the current action. In addition, none of the point estimates equal 𝛼𝛼1. Together, this 
suggests that a VAR analysis will not accurately capture the underlying coefficient of  
the reaction function. 
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Figure 4. Average VAR coefficient over Monte Carlo simulations with 95 percent 
simulated confidence intervals. Outcome is player Y’s actions. 

 
 
Finally, the impulse response function also suggests longer effects of an action than the 
reaction curve. Figure 5 plots the average and 95 percent confidence intervals of Y’s 
impulse response to a shock on X. There is consistent evidence of persistent effects 
from a shock to X. However, the reaction curve was designed to depend only on the 
previous action. The persistent and prolonged effects are due to the heterogeneity in 
wait times. In practice, this means that a researcher may overstate the persistence of 
one side’s action simply due to data aggregation. 
 
Figure 5. Orthogonal impulse response function of Y on a shock to X with 95 percent 
simulated confidence intervals. 
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4.3 Structural Approach 

Next, we present the effectiveness of our structural approach. Our proposal requires a 
researcher employ a rule identifying if periods of zero action are inaction or waiting 
periods. Table 1 varies the correctness of this rule. The first entry is 1, which means the 
researcher perfectly removes the waiting periods without removing the inaction 
periods. As the rule quality decreases, the probability of removing a waiting period 
decreases while the probability of inadvertently removing an action increases. The last 
row is 0, meaning the researcher removes all inaction periods while keeping the waiting 
periods. When the rule is 50 percent, it means the researcher’s rule is equivalent to a 
coin toss. 
 
Table 1. 1000 Monte Carolo Simulations of Rules-Based Approach 

 
 

a Monte Carlo simulations are repeated 1000 times. OLS is used to estimate the parameters and the latent 
coefficient values are presented. The intercept is set to 1 and the slope to 0.5. Column 1 shows the 
probability of correctly identifying a waiting period. If the rule was x percent effective, then a waiting row is 
removed with probability x and a row in which y moved (but caused no damage) is removed with probability 
1-x. The oracle rule is displayed first. The next three columns present the average and Monte Carlo 
distribution for the intercept, followed by the Monte Carlo test statistics of whether the estimate is 
statistically different from the true parameter value. The last six rows are analogous for the slope. 
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A misspecified rule can lead to large distortions in magnitude and inference. When the 
researcher imposes a rule that is right 90 percent of the time, the point estimate for the 
slope is biased downward and the intercept is biased upward. The bias becomes bigger 
as the rule becomes worse and inference becomes unreliable. Therefore, slope 
coefficients from a misspecified rule should be observed as overly conservative. 
 
The bias is driven by keeping the waiting periods in and inadvertently removing actions. 
Having erroneous rows of zero increases the intercept simultaneously attenuating the 
slope. Intuitively, this is driven by a decrease in the covariance between X and Y. In 
periods where Y is waiting, the value is always 0. This erroneous set of data points 
dampen the covariance used to estimate the slope, also mechanically forcing the 
intercept to be larger (in absolute terms) in order to minimize the sum of squares error. 
Conversely, a misspecified rule also removes a player’s actions, further adding noise to 
the reaction curve estimation process. 
 
There is a little slack for rule misspecification. Our simulations suggest that a nearly 
perfect rule introduces minimal bias and inference is not misleading. Anything else will 
cause slope coefficients to be attenuated and intercepts to be inflated. 
 
 

5. Conclusion 

Estimating a player’s reaction curve during strategic interactions is important for both 
academics and policymakers. We show that if the underlying nature of a conflict is not 
taken into account, then standard econometric practices can lead to erroneous results. 
In our examples, we assume two players engage in a sequential game with varying 
response times. Even in an overly simplistic setting where players only respond to the 
opponent’s last action, traditional VAR analysis can misspecify the length of response to 
a shock, the optimal lag length, and the coefficient estimates. To address these issues, 
researchers should consider organizing their data at the level of the players’ actions 
rather than standard time intervals. 
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A. Appendix 

A.1 Example Action-Level Data 

The data is originally generated at the action level. Table A1 shows the data after it is 
converted to time-interval notation. The labels show if player X performed an action, 
player Y performed an action, or it was a lull period. 
 
Table A1. Example Excerpt of Data at Time-Interval Level. 
 

 
 
A side may choose to perform no action. While this is recorded as a 0, it comes from a 
different data generating process than the zeros from the waiting rows. 
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